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ABSTRACT
MapReduce-tailored distributed filesystems—such as HDFS for Hadoop
MapReduce—and parallel high-performance computing filesystems
are tailored for considerably different workloads. The purpose of
our work is to examine the performance of each filesystem when
both sorts of workload run on it concurrently.

We examine two workloads on two filesystems. For the HPC
workload, we use the IOR checkpointing benchmark and the Paral-
lel Virtual File System, Version 2 (PVFS); for Hadoop, we use an
HTTP attack classifier and the CloudStore filesystem. We analyze
the performance of each file system when it concurrently runs its
“native” workload as well as the non-native workload.

1. INTRODUCTION
We examine the possibility of using the same filesystem installa-

tion for both Hadoop MapReduce workloads and high-performance
computing workloads. We examine the performance of mixed work-
loads: a Hadoop workload and an HPC checkpointing workload
running concurrently on the same filesystem.

MapReduce is an algorithm and execution strategy used for pro-
cessing very large data sets on clusters of commodity machines
holding the data. Analysis jobs that fit the MapReduce style are
written for a particular MapReduce engine; the engine parallelizes
the work across a cluster, and typically provides fault tolerance.

There are multiple implementations of MapReduce, with differ-
ent filesystem requirements. Google’s MapReduce implementa-
tion[4] heavily uses atomic appends to files, a feature supported
by the Google File System[7]. In this work, we use a different im-
plementation: Apache’s Hadoop MapReduce[1], a Java-based im-
plementation that uses write-once files instead of atomic appends.
Both filesystems use replication, as they are built to run MapRe-
duce on unreliable commodity machines.

On the other hand, parallel high-performance computing (HPC)
filesystems are designed for more general-purpose workloads in
which data is transmitted between storage system and compute
cluster over an interconnection network. At a site where both types

of workloads are of interest, it would be useful to support both
workloads concurrently with a single filesystem installation. For
instance, consider a large filesystem used for simulation work: the
same parallel filesystem could save checkpoints for the currently
running simulation, while running analysis jobs on the raw results
from a previous simulation.

Furthermore, the greater fault tolerance of the chunk replica-
tion mechanism in MapReduce-tailored filesystems would be use-
ful for large HPC clusters; we know of no production-quality paral-
lel filesystem that offers declustered replication on unreliable com-
modity hardware. (Ceph[11] offers declustered replication on un-
reliable commodity hardware, but it is still alpha-quality.)

Tantisiriroj et al. [10] at CMU consider the related problem of
running Hadoop workloads on parallel HPC parallel filesystems,
They develop a shim to allow Hadoop to run on the Parallel Virtual
File System, Version 2 (PVFS), and show comparable performance
with Hadoop’s HDFS distributed filesystem.

We examine the mixed workloads under two filesystems: one
suited for each type of workload. We use PVFS, which is suited
for HPC workloads, using the aforementioned shim; and we use
CloudStore, which is suited for Hadoop workloads. We also add
infrastructure to Hadoop and to our chosen HPC benchmark, the
Sequoia IOR benchmark, to collect traces of parallel file I/O for
both workloads; and measure the trace overhead.

2. THE FILESYSTEMS
Most parallel filesystems share a basic architecture, consisting of

a metadata server (called a nameserver in HDFS and CloudStore),
which handles operations such as creating and opening files; and
multiple storage nodes, which store chunks of data. Individual files
are split into chunks, which are stored on different nodes according
to a placement policy. A client contacts the metadata server to open
or create a file. To read or write, it uses the placement policy to lo-
cate the relevant chunks, and makes read and write requests directly
with the storage nodes hosting the chunks. Clients may run on the
same cluster as the filesystem, or on a different cluster entirely.

Hadoop workloads and HPC workloads are each supported by
multiple filesystems. Our filesystem choices for this work are largely
determined by the requirement that each filesystem host both types
of workloads. This is complicated by interface and file semantics
differences: while HPC checkpointing workloads generally use a
POSIX-like interface and support shared writes, Hadoop uses its
own custom filesystem API, tailored to single-writer write-once
workloads.

When selecting a Hadoop-native filesystem that could also sup-
port HPC checkpointing workloads, we found that Hadoop’s HDFS



was unsuitable: HDFS does not support shared writes to one file
by multiple clients, a common checkpointing pattern. However,
CloudStore[8], another Hadoop-tailored filesystem, does support
shared writes. Choosing an HPC-native filesystem to run Hadoop
workloads was straightforward: since the writers of the PVFS Hadoop
shim were kind enough to provide us a prerelease version, we used
PVFS. We briefly describe the two filesystems below, and discuss
their suitability of each for the non-native workload.

2.1 CloudStore
The CloudStore filesystem, formerly called KosmosFS (KFS), is

a distributed filesystem similar to HDFS, and tailored for Hadoop
workloads.

In typical HPC filesystems, the clients performing the compu-
tation are on a separate cluster from the storage cluster; the two
clusters communicate via high-speed interconnects. By contrast,
typical MapReduce installations use the same set of nodes for both
storage and computation. Combined with a large chunk size, this
provides an opportunity to exploit locality: placing clients on the
nodes that already hold their desired data reduces network band-
width. By default, files in CloudStore are written in 64 MB chunks,
with three replicas of each chunk for reliability. The selection of
chunkservers to store replicas is done as follows: one replica is
stored on the chunkserver hosted on the client machine itself, in-
curring no network bandwidth; one replica is stored on a differ-
ent chunkserver, on the same rack; and one replica is stored on a
chunkserver on a different rack. Hadoop partitions the job into Map
tasks, and attempts to place the Map tasks near their data.

2.2 PVFS
PVFS[3], a parallel filesystem suited to high-performance com-

puting workloads, uses a considerably different data layout. Files
are split into small chunks (64 KB by default); a file’s first chunk is
stored on a randomly-selected storage node, and subsequent chunks
of the file are stored across nodes in a round-robin fashion. PVFS
does not replicate data across nodes. Typically, PVFS clients are
on nodes separate from the storage cluster.

We use the PVFS Hadoop shim to run Hadoop on PVFS. Typ-
ically for Hadoop, but atypically for PVFS, we run Hadoop and
PVFS on the same set of nodes. The shim adapts PVFS to better
suit Hadoop workloads: it adds readahead buffering and replica-
tion, and exposes the data layout to let Hadoop exploit locality. As
in [10], we also set PVFS to use 64 MB chunks: since Hadoop
takes the chunk size into account when partitioning a job, the small
default chunk size of PVFS yields an excessively large number of
tiny Map tasks, slowing performance by an order of magnitude.
Tantisiriroj et al. found PVFS with the shim to be comparable in
performance to HDFS for Hadoop MapReduce-workloads, except
for write-heavy workloads.

3. WORKLOADS

3.1 IOR benchmark
As a representative HPC workload, we use the IOR parallel I/O

benchmark from LLNL’s ASC Sequoia set of HPC benchmarks[2],
which supports various access patterns.We use IOR to simulate
HPC checkpointing, where each client in a running simulation pe-
riodically dumps its state to disk. There are two typical checkpoint-
ing workloads: one an N-N workload, where each client writes its
state to a separate file; and the other an N-1 workload, where all
clients write their state to the same file. An N-1 workload may be
nonstrided, with each client using a separate, contiguous region of
the file; or strided, where the clients write their state to the file in

an interleaved fashion. Though HPC checkpointing occurs period-
ically throughout a simulation, we do not simulate this periodicity;
each IOR experiment simulates a single checkpoint.

IOR has support for several filesystem APIs, but CloudStore
is not among them. To run IOR unmodified on CloudStore, we
would need to mount CloudStore as a regular Linux filesystem. In
Linux, there are two ways to do this: using a kernel module for the
filesystem, or using a FUSE module. However, CloudStore has no
Linux kernel module; and while it does have a FUSE module, using
FUSE adds overhead. To avoid incurring the overhead of FUSE,
we avoided mounting CloudStore. We instead modified IOR to use
CloudStore’s POSIX-like C++ library directly. We make no effort
to tune CloudStore to improve its performance with IOR; this is in
contrast to the Hadoop PVFS shim, which makes several adapta-
tions to improve Hadoop performance on PVFS.

3.2 Hadoop TFIDF workload
As our Hadoop workload, we use a Hadoop implementation of

an HTTP attack classifier, which detects malicious code in incom-
ing HTTP requests. The classifier uses a Term Frequency-Inverse
Document Frequency (TFIDF) metric[6]. For brevity, we refer to
this as the TFIDF workload. The workload partitions a large set of
HTTP requests among a number of Map tasks; each Map task reads
a previously generated 69 MB model file, and uses it to classify its
share of the dataset.

Unlike many MapReduce workloads, this workload lacks a Re-
duce phase; each Map task generates one results file, and the set of
results files comprises the result of the job. We expect that a Re-
duce phase would incur more network bandwidth. The Map tasks
send their intermediate results to one or a few nodes; thus, the op-
portunity to exploit locality is lower than in the Map phase. Un-
fortunately, we cannot yet fully trace Hadoop jobs with a Reduce
phase.

4. TRACING INFRASTRUCTURE
We considered existing tracing methods, such as strace and Pi-

anola[9], but decided to write our own tracing mechanisms for IOR
and Hadoop.

To trace IOR, we opted to add a shim layer in the IOR code itself,
to record a trace of all the read and write calls from each client. The
low complexity of the IOR code made this straightforward; we sim-
ply wrapped the file I/O calls in the code, and sent trace information
to stdout. Since we linked CloudStore support directly into IOR,
bypassing the Linux filesystem interface, system call tracing tools,
such as strace and Pianola, would not have captured CloudStore
I/O.

Tracing Hadoop was more involved. As with IOR on Cloud-
Store, system call tracing tools were unsuitable, as Hadoop does
not use the Linux filesystem interface when performing parallel
I/O. Hadoop exposes an abstract filesystem interface in Java, via the
abstract FileSystem class, which handles metadata operations;
and the FSDataInputStream and FSDataOutputStream
classes, which represent files open for reading and writing, respec-
tively. The write-once-read-many API differs from POSIX: no-
tably, files are written only on creation, by a single writer, with
no seeking supported. Particular storage systems, such as HDFS,
CloudStore, and Amazon’s S3, are supported in Hadoop via im-
plementations of these classes. The default filesystem to use in
Hadoop is specified in a configuration file by a URI. For instance, to
use PVFS, we use a URI of the form pvfs2://[server]:[port],
pointing to a PVFS server in the cluster. Given this URI, Hadoop
knows (via configuration settings) to instantiate the PVFS2FileSystem
class.



To trace Hadoop I/O, we implement versions of the three classes
designed to trace another filesystem. For instance, to trace PVFS,
we use a URI of the form tfs://pvfs2-[server]:[port].
Hadoop instantiates our class, TracerFileSystem, which itself
instantiates PVFS2FileSystem. The tracer captures all meta-
data calls, logs them using Hadoop’s existing logging system, and
forwards them to PVFS. Unfortunately, because of issues with final
methods and the Hadoop class hierarchy, we could not use the same
method to wrap the actual input and output streams; we were forced
to modify the PVFS and CloudStore FileSystem implementations
to wrap the streams and trace read and write operations. These
wrappers likewise use Hadoop’s existing logging system. The trace
output resembles that of strace, giving the timestamp, the operation
and its parameters, the return value (if any), and the execution time.

Tracing the raw read and write calls in Hadoop produced an
excessive volume of trace data, severely degrading performance.
Reading the classification model caused much of the problem: each
Map task read it a few bytes at a time. To reduce the amount of
trace output, we placed a read buffer with some readahead between
the read calls and the tracing mechanism; and placed a write buffer
between the write calls and the tracing mechanism. (The Hadoop
PVFS shim already has suitable buffers; we merely placed the trace
mechanism on the opposite side of the buffers from the I/O calls.)
We left these buffers in place even with tracing turned off.

Hadoop MapReduce jobs, in general, stores intermediate results
in local temp directories, off the parallel filesystem, and sends them
to the appropriate Reduce tasks via HTTP. Our tracing mechanism
cannot currently trace this I/O, as it only traces I/O on the parallel
filesystem. This is not a problem for the TFIDF workload, which
skips the reduce phase and writes Map results directly to the paral-
lel filesystem. However, this omission must be filled for our tracing
mechanism to completely trace Hadoop jobs that do include a Re-
duce phase; we plan to address it in future work.

With any tracing mechanism, performance effects are a con-
cern. The tracing mechanisms for both IOR and Hadoop store trace
data on an NFS share separate from the experimental cluster. This
avoids contention with the job for disk I/O, but not for CPU and
network bandwidth. The results in Section 5 come from runs with
tracing turned off; to measure overhead, we also ran each experi-
ment with tracing turned on.

Since a faster-performing experiment will, in general, produce
trace data more quickly, we examine our fastest-performing runs
for their rate of trace data generation. We found that our fastest IOR
runs produced trace data at about 2 MB/s; and our fastest TFIDF
runs produced trace data at about 8 MB/s. We attribute the larger
trace sizes in TFIDF to a larger number of smaller I/O operations,
and to a more verbose trace format.1

We measure tracing overhead by comparing performance results
from traced runs with those for the equivalent untraced runs. For
our baseline (non-mixed) experiments, the tracing overhead was
small. For IOR, most traced results were within 0.3 MB/s of the
equivalent untraced result. For TFIDF, tracing added 5.4% on av-
erage to the runtime under PVFS, and 2.6% to the runtime under
CloudStore.

The overhead for the mixed workloads, with both workloads run-
ning and being traced at once, was greater in most cases than the
overhead for the corresponding baseline workload. Tracing over-
head for IOR was 1–2 MB/s for both filesystems. For TFIDF, trac-
ing overhead increased the runtime by 11% with Cloudstore. The
exception was TFIDF on PVFS: the runtime increased by less than
1.5%, lower than the 5.4% overhead in the baseline run.
1Hadoop adds extra information to log entries; and we included
filenames in trace entries, to improve readability.

5. EXPERIMENTS
We ran our tests on 19 nodes of the tuson cluster at LLNL.

Each node has a 2-core 2.4 GHz Intel Xeon (32-bit) CPU, 4 GB of
RAM, a 120 GB disk, and a Gigabit Ethernet connection. We ran
each experiment 5 times; we measured bandwidth once per run, by
dividing the total workload size by the runtime, and we give the
average of these bandwidths for each experiment.

We ran three different baseline workloads on each filesystem,
for a total of six baseline experiments. The first workload is an
N-N IOR checkpointing workload with a total write size of 4.75
GB; each client writes 256 MB to its own file, using 256 KB write
operations. The second workload is the same size, but is an N-1
strided workload with a chunk size of 64 MB. All clients write to
the same file, writing in interleaved 64 MB chunks. Again, each
client writes a total of 256 MB, using 256 KB write operations.
The third workload is the TFIDF workload, classifying a 7.2 GB
dataset. This dataset is made of 64 copies of the dataset from the
ECML/PKDD 2007 Discovery Challenge[5].

We ran four mixed workload experiments: two different mixed
workloads on each filesystem. One mixed workload runs IOR N-1
and TFIDF concurrently; the other runs IOR N-N and TFIDF con-
currently. Since we measured the performance of both workloads,
the different running times were a concern: TFIDF runs for con-
siderably longer than either of the IOR runs. To compensate, we
increased the size of the IOR run in each mixed workload so that
the IOR and TFIDF runtimes matched; each one finished within a
few seconds of the other.

5.1 Results
The behavior of Hadoop’s scheduler is a factor in our results.

Among its tasks, the job scheduler decides which node to place
each Map task on. Each TFIDF run used 114 Map tasks. In dif-
ferent experiments, the Hadoop scheduler made different numbers
of them data-local tasks: tasks running on the same node that hold
their input data, thereby reducing network traffic.

We first present the results for the experiments on CloudStore.
The left-hand side of Figure 1 shows the performance of the TFIDF
workload on its own, with IOR N-1, and with IOR N-N; IOR runs
here with an output size of 4.75 GB. We found that TFIDF incurred
a performance hit of about a third under the mixed workload. The
left-hand side of Figure 2 shows the performance of the IOR work-
load, including the mixed-workload IOR results from the same ex-
periments that produced the mixed-workload CloudStore TFIDF
results: the N-1 workload is slowed down by about a third, and the
N-N workload is slowed by about a fourth.

That the slowdown is always less than half suggests that neither
workload is using the CloudStore filesystem near its full capacity.
Since the IOR benchmark does nothing but write data, this suggests
that CloudStore is not well-suited out of the box for checkpointing
workloads. This is reinforced by the PVFS results we present be-
low; for nearly every workload combination, IOR runs faster on
PVFS than on CloudStore.

For the baseline CloudStore TFIDF experiment, the Hadoop sched-
uler made none of the Map tasks data-local; for the mixed Cloud-
Store experiments, made an average of 95 of 114 Map tasks data-
local.

We next present the results for the same workloads, run on PVFS.
The right-hand side of Figure 1 shows the performance of TFIDF.
Surprisingly, on PVFS, TFIDF is only marginally slowed down
when IOR is running concurrently. On the other hand, both IOR
N-1 and IOR N-N are slowed down by half, as shown in the right
hand side of Figure 2.

Figure 3 shows a different view of the performance results. Us-
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Figure 1: We show the performance results for the TFIDF
workload on both CloudStore and PVFS. We show results for
TFIDF running on its own; concurrently with IOR N-1; and
concurrently with IOR N-N.
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Figure 2: We show the performance of the IOR workload run-
ning on each filesystem. We show results for IOR N-N and IOR
N-1, both alone and concurrently with TFIDF.

ing the results of the baseline experiments, we compute the runtime
that each mixed-workload experiment would have taken, had the
jobs been run sequentially instead of concurrently; and plot those
with the actual mixed-workload runtimes. In all cases, the mixed-
workload runtime is lower than the sequential runtime.

For the PVFS TFIDF experiments, the Hadoop scheduler’s de-
cisions were almost exactly the reverse of its decisions for Cloud-
Store. The baseline PVFS experiment had an average of 92 data-
local Map tasks; and the mixed PVFS experiments had no data-
local Map tasks. We hypothesize that much of the baseline perfor-
mance difference for TFIDF between PVFS and CloudStore comes
from the greater locality in PVFS.

As future work, we will examine the behavior of the Hadoop
job scheduler to determine the cause of these differences. We will
modify the scheduler to take control of the Map task placement,
and rerun our benchmarks with locality forced high, and locality
forced low; this will allow us to measure the performance effects
of locality in TFIDF, for both standalone and mixed workloads.

6. CONCLUSIONS AND FUTURE WORK
We examined the performance of mixed workloads running on

the same filesystem: a Hadoop workload with an HPC checkpoint-
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Figure 3: We show the runtime of each mixed workload, com-
pared to the total runtime (computed from baseline experi-
ments) if the two parts of the workload run separately. In each
case, the total runtime is lower for the mixed workload.

ing workload. We measured performance on two filesystems, one
tailored to each workload: the Hadoop-friendly CloudStore filesys-
tem, and the HPC-oriented PVFS filesystem. We also developed
a mechanism to record file I/O traces from both workloads, and
found it to have a small overhead in most cases.

We found that the TFIDF Hadoop workload, when run alone,
ran considerably more slowly on PVFS than on CloudStore. We
found that TFIDF, running on PVFS, was scarcely slowed down
by a concurrent running checkpointing workload; but in all other
cases, jobs were slowed down substantially when run as part of a
mixed workload. We also discovered that the Hadoop job sched-
uler made different placement decisions for TFIDF Map tasks for
the mixed workload runs, when compared to identically configured
standalone TFIDF runs.

We have several promising avenues for future work. We will de-
termine why the Hadoop scheduler chooses to exploit locality in
some cases and not others. We plan to run experiments on larger
numbers of nodes; this will allow us to examine how scalability is
affected by mixed workloads. We also plan to improve our Hadoop
tracing mechanism by reducing the size of trace output to improve
performance, and by adding a way to trace the file I/O that Hadoop
performs in local temporary directories. Then, we will be able
to run and properly trace Hadoop jobs with a Reduce phase. We
would also like to improve the performance of checkpointing work-
loads on CloudStore.
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